Return to discussion

Consider the Ka expression marked [1]:
  [H+] [A¯]
Ka = ––––––––
  [HA]

Divide by [H+]:

[A¯]   Ka
––––– = ––––
[HA]   [H+]

Flip:

[HA]   [H+]
––––– = ––––
[A¯]   Ka
       Consider the Kb expression marked [2]:
  [B+] [OH¯]
Kb = –––––––––
  [BOH]

Divide by [OH¯]:

[B+]   Kb
––––– = –––––
[BOH]   [OH¯]

Flip:

[BOH]   [OH¯]
––––– = –––––
[B+]   Kb
       Consider [3] in a slightly modified way:
  [HA]   [BOH]
Kh = –––––  x  ––––––
  [A¯]   [B+]

Substitute:

  [H+]   [OH¯]
Kh = –––––  x  ––––––
  Ka   Kb

Since Kw = [H+] [OH¯], we have:

  Kw
Kh = ––––––
  KaKb

Return to discussion